If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5g^2+12g-9=0
a = 5; b = 12; c = -9;
Δ = b2-4ac
Δ = 122-4·5·(-9)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18}{2*5}=\frac{-30}{10} =-3 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18}{2*5}=\frac{6}{10} =3/5 $
| 10w-5=15 | | 3y^2+9y+8=0 | | 10w-5=20 | | (4+3)x=20 | | -60=4(3x-5)-7x | | 7(x+4.9)=3/7 | | -3=96+b/b | | 3(8+x)-15=24 | | 7x+8(x+1/4)=3(6x+9)-8 | | -7x-2(x-11/2)=-13 | | 3^9-3x=27 | | 6x+39=20x-45 | | 2(x+7)-34=4x-11x+4x(x-1) | | 8=2x-x | | (-2x-4)/5+8/5=3(x-1) | | 2+1.25f=10−2.75ff= | | 7x+3=26x | | 0=14x-126 | | x-(9x-10)+11=12x+3(–2x+1/3) | | 16x=178 | | 6π+5x=π | | 6x-8x-5+3=20 | | x^2+0.6x=0.91 | | 2w+2(w+40)=3(w+40)+20 | | 2w+2(w=40)=3(w+40)+20 | | -10=2q | | 7=k+5 | | 1.5=5x+5.7 | | 0=5-v | | -48=6(v+2 | | 3+7x=+6-5x | | 5+x/2=4 |